Zeros in the character tables of symmetric groups with an -core index

نویسندگان

چکیده

Let $\mathcal{C}_n =\left [\chi_{\lambda}(\mu)\right]_{\lambda, \mu}$ be the character table for $S_n,$ where indices $\lambda$ and $\mu$ run over $p(n)$ many integer partitions of $n.$ In this note we study $Z_{\ell}(n),$ number zero entries $\chi_{\lambda}(\mu)$ in $\mathcal{C}_n,$ is an $\ell$-core partition For every prime $\ell\geq 5,$ prove asymptotic formula form $$ Z_{\ell}(n)\sim \alpha_{\ell}\cdot \sigma_{\ell}(n+\delta_{\ell})p(n)\gg_{\ell} n^{\frac{\ell-5}{2}}e^{\pi\sqrt{2n/3}},$$ $\sigma_{\ell}(n)$ a twisted Legendre symbol divisor function, $\delta_{\ell}:=(\ell^2-1)/24,$ $1/\alpha_{\ell}>0$ normalization Dirichlet $L$-value $L\left(\left(\frac{\cdot}{\ell}\right),\frac{\ell-1}{2}\right).$ primes $\ell$ $n>\ell^6/24,$ show that $\chi_{\lambda}(\mu)=0$ whenever are both $\ell$-cores. Furthermore, if $Z^*_{\ell}(n)$ indexed by two $\ell$-cores, then 5$ obtain Z^*_{\ell}(n)\sim \alpha_{\ell}^2 \cdot \sigma_{\ell}( n+\delta_{\ell})^2 \gg_{\ell} n^{\ell-3}.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Character Tables of Symmetric Groups

We generalize a well-known result on the determinant of the character tables of finite symmetric groups. It is a well-known fact that ifXn is the character table of the symmetric group Sn, then the absolute value of the determinant of Xn equals an, which is defined as the product of all parts of all partitions of n. It also equals bn, which is defined as the product of all factorials of all mul...

متن کامل

Labelling the character tables of symmetric and alternating groups

Let X be a character table of the symmetric group Sn. It is shown that unless n = 4 or n = 6, there is a unique way to assign partitions of n to the rows and columns of X so that for all λ and ν, Xλν is equal to χ(ν), the value of the irreducible character of Sn labelled by λ on elements of cycle type ν. Analogous results are proved for alternating groups, and for the Brauer character tables of...

متن کامل

Properties of some character tables related to the symmetric groups

We determine invariants like the Smith normal form and the determinant for certain integral matrices which arise from the character tables of the symmetric groups Sn and their double covers. In particular, we give a simple computation, based on the theory of Hall-Littlewood symmetric functions, of the determinant of the regular character table XRC of Sn with respect to an integer r ≥ 2. This re...

متن کامل

Character Tables of Metacyclic Groups

We show that two metacyclic groups of the following types are isomorphic if they have the same character tables: (i) split metacyclic groups, (ii) the metacyclic p-groups and (iii) the metacyclic {p, q}-groups, where p, q are odd primes. 2010 Mathematics Subject Classification. Primary 20C15; Secondary 20D15, 20F16, 20F22.

متن کامل

The Character Tables of Weyl Groups

To classify the finite dimensional pointed Hopf algebras with Weyl group G of E6, E7, F4, G2, we obtain the representatives of conjugacy classes of G and all character tables of centralizers of these representatives by means of software GAP. 2000 Mathematics Subject Classification: 16W30, 68M07 keywords: GAP, Hopf algebra, Weyl group, character.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian mathematical bulletin

سال: 2022

ISSN: ['1496-4287', '0008-4395']

DOI: https://doi.org/10.4153/s0008439522000443